Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Stem Cell Rev Rep ; 19(4): 906-927, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36585572

RESUMEN

Hematopoietic stem cells are maintained in a specialized microenvironment, known as the 'niche', within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method - 'whole bone subcutaneous transplantation'- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.


Asunto(s)
Médula Ósea , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Células Madre Hematopoyéticas/metabolismo , Trasplante de Médula Ósea , Huesos
3.
Semin Cell Dev Biol ; 144: 11-19, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36202693

RESUMEN

The world population's life expectancy is growing, and neurodegenerative disorders common in old age require more efficient therapies. In this context, neural stem cells (NSCs) are imperative for the development and maintenance of the functioning of the nervous system and have broad therapeutic applicability for neurodegenerative diseases. Therefore, knowing all the mechanisms that govern the self-renewal, differentiation, and cell signaling of NSC is necessary. This review will address some of these aspects, including the role of growth and transcription factors, epigenetic modulators, microRNAs, and extracellular matrix components. Furthermore, differentiation and transdifferentiation processes will be addressed as therapeutic strategies showing their significance for stem cell-based therapy.


Asunto(s)
MicroARNs , Células-Madre Neurales , Diferenciación Celular , Neurogénesis/fisiología , Neuronas , MicroARNs/genética
4.
Curr Med Chem ; 30(34): 3846-3879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36154587

RESUMEN

Systemic arterial hypertension (SAH) is a major risk factor for several secondary diseases, especially cardiovascular and renal conditions. SAH has a high prevalence worldwide, and its precise and early recognition is important to prevent the development of secondary outcomes. In this field, the study of biomarkers represents an important approach to diagnosing and predicting the disease and its associated conditions. The use of biomarkers in hypertension and hypertension-related disorders, such as ischemic stroke, intracerebral hemorrhage, transient ischemic attack, acute myocardial infarction, angina pectoris and chronic kidney disease, are discussed in this review. Establishing a potential pool of biomarkers may contribute to a non-invasive and improved approach for their diagnosis, prognosis, risk assessment, therapy management and pharmacological responses to a therapeutic intervention to improve patients' quality of life and prevent unfavorable outcomes.


Asunto(s)
Hipertensión , Ataque Isquémico Transitorio , Accidente Cerebrovascular , Humanos , Calidad de Vida , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/prevención & control , Hemorragia Cerebral , Biomarcadores , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología
5.
Semin Cell Dev Biol ; 144: 87-96, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36182613

RESUMEN

Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.


Asunto(s)
Enfermedades Transmisibles , Organoides , Humanos , Tracto Gastrointestinal
6.
Angiogenesis ; 26(1): 129-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183032

RESUMEN

Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.


Asunto(s)
Neoplasias , Neuroglía , Humanos , Estudios Retrospectivos , Neuroglía/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Pericitos , Microambiente Tumoral/fisiología , Neoplasias/patología
7.
Semin Cell Dev Biol ; 144: 3-10, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36192310

RESUMEN

Organoid development and organ-on-a-chip are technologies based on differentiating stem cells, forming 3D multicellular structures resembling organs and tissues in vivo. Hence, both can be strategically used for disease modeling, drug screening, and host-pathogen studies. In this context, this review highlights the significant advancements in the area, providing technical approaches to organoids and organ-on-a-chip that best imitate in vivo physiology.


Asunto(s)
Biomimética , Organoides , Sistemas Microfisiológicos , Células Madre
8.
Stem Cell Rev Rep ; 18(8): 2852-2871, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962176

RESUMEN

Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Humanos , Recién Nacido , Adulto , Neurogénesis/fisiología , Ventrículos Laterales , Neuronas , Neuroglía , Mamíferos
9.
Peptides ; 151: 170746, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35033621

RESUMEN

This study aimed to investigate whether the Diminazene Aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, can revert cardiac dysfunction in ischemia reperfusion-induced (I/R) injury in animals and examine the mechanism underlying this effect. Wistar rats systemically received DIZE (1 mg/kg) for thirty days. Cardiac function in isolated rat hearts was evaluated using the Langendorff technique. After I/R, ventricular non-I/R and I/R samples were used to evaluate ATP levels. Mitochondrial function was assessed using cardiac permeabilized fibers and isolated cardiac mitochondria. Cardiac cellular electrophysiology was evaluated using the patch clamp technique. DIZE protected the heart after I/R from arrhythmia and cardiac dysfunction by preserving ATP levels, independently of any change in coronary flow and heart rate. DIZE improved mitochondrial function, increasing the capacity for generating ATP and reducing proton leak without changing the specific citrate synthase activity. The activation of the ACE2 remodeled cardiac electrical profiles, shortening the cardiac action potential duration at 90 % repolarization. Additionally, cardiomyocytes from DIZE-treated animals exhibited reduced sensibility to diazoxide (KATP agonist) and a higher KATP current compared to the controls. DIZE was able to improve mitochondrial function and modulate cardiac electrical variables with a cardio-protective profile, resulting in direct myocardial cell protection from I/R injury.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Daño por Reperfusión , Adenosina Trifosfato , Animales , Arritmias Cardíacas , Diminazeno/análogos & derivados , Miocitos Cardíacos , Peptidil-Dipeptidasa A , Ratas , Ratas Wistar , Reperfusión
10.
J Mol Med (Berl) ; 100(2): 151-165, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34735579

RESUMEN

Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The comprehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.


Asunto(s)
Adipocitos/metabolismo , Estrés Psicológico/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Humanos , Interleucina-6/metabolismo , Microambiente Tumoral
11.
Stem Cell Rev Rep ; 18(2): 732-751, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34780018

RESUMEN

Stem cell therapy is an interesting approach for neural repair, once it can improve and increase processes, like angiogenesis, neurogenesis, and synaptic plasticity. In this regard, adult neural stem cells (NSC) are studied for their mechanisms of proliferation, differentiation and functionality in neural repair. Here, we describe novel neural differentiation methods. NSC from adult mouse brains and human adipose-derived stem cells (hADSC) were isolated and characterized regarding their neural differentiation potential based on neural marker expression profiles. For both cell types, their capabilities of differentiating into neuron-, astrocyte- and oligodendrocytes-like cells (NLC, ALC and OLC, respectively) were analyzed. Our methodologies were capable of producing NLC, ALC and OLC from adult murine and human transdifferentiated NSC. NSC showed augmented gene expression of NES, TUJ1, GFAP and PDGFRA/Cnp. Following differentiation induction into NLC, OLC or ALC, specific neural phenotypes were obtained expressing MAP2, GalC/O4 or GFAP with compatible morphologies, respectively. Accordingly, immunostaining for nestin+ in NSC, GFAP+ in astrocytes and GalC/O4+ in oligodendrocytes was detected. Co-cultured NLC and OLC showed excitability in 81.3% of cells and 23.5% of neuron/oligodendrocyte marker expression overlap indicating occurrence of in vitro myelination. We show here that hADSC can be transdifferentiated into NSC and distinct neural phenotypes with the occurrence of neuron myelination in vitro, providing novel strategies for CNS regeneration therapy. Superior Part: Schematic organization of obtaining and generating hNSC from hADSC and differentiation processes and phenotypic expression of neuron, astrocyte and oligodendrocyte markers (MAP2, GFAP and O4, respectively) and stem cell marker (NES) of differentiating hNSC 14 days after induction. The nuclear staining in blue corresponds to DAPI. bar = 100 µm. Inferior part: Neural phenotype fates in diverse differentiation media. NES: nestin; GFAP: Glial fibrillary acidic protein. MAP2: Microtubule-associated protein 2. TUJ1: ß-III tubulin. PDGFRA: PDGF receptor alpha. Two-way ANOVA with Bonferroni post-test with n = 3. * p < 0.05 and ** p < 0.01: (NSCiM1 NSC induction medium 1) vs differentiation media.


Asunto(s)
Transdiferenciación Celular , Células-Madre Neurales , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Nestina , Neurogénesis , Neuronas , Oligodendroglía
12.
Acta Neuropathol Commun ; 9(1): 183, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784974

RESUMEN

Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.


Asunto(s)
Melanoma/genética , Melanoma/patología , Células Receptoras Sensoriales/patología , Animales , Conducta Animal/efectos de los fármacos , Biopsia , Línea Celular Tumoral , Simulación por Computador , Progresión de la Enfermedad , Humanos , Vigilancia Inmunológica , Linfocitos/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Células Receptoras Sensoriales/metabolismo , Factores Supresores Inmunológicos , Microambiente Tumoral
13.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188608, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384850

RESUMEN

Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells. The arising knowledge on cross-talks within the tumor microenvironment will be essential for the development of new therapies against cancer. Here, we review recent progress in our understanding of pericytes roles within tumors.


Asunto(s)
Pericitos/metabolismo , Microambiente Tumoral/inmunología , Humanos
14.
Crit Rev Oncol Hematol ; 163: 103368, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34051302

RESUMEN

Hematopoietic stem cells are the most illustrious inhabitants of the bone marrow. Direct visualization of endogenous hematopoietic stem cells in this niche is essential to study their functions. Until recently this was not possible in live animals. Recent studies, using state-of-the-art technologies, including sophisticated in vivo inducible genetic approaches in combination with two-photon laser scanning microscopy, allow the follow-up of endogenous hematopoietic stem cells' behavior in their habitat. Strikingly, the new findings reveal that quiescent hematopoietic stem cells are more mobile than previously thought, and link their retained steady state within the niche to a mobile behavior. The arising knowledge from this research will be critical for the therapy of several hematological diseases. Here, we review recent progress in our understanding of hematopoietic stem cell biology in their niches.


Asunto(s)
Médula Ósea , Nicho de Células Madre , Animales , Células de la Médula Ósea , División Celular , Células Madre Hematopoyéticas , Humanos
15.
Histochem Cell Biol ; 156(2): 165-182, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34003355

RESUMEN

Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.


Asunto(s)
Antígenos Virales de Tumores/genética , Neoplasias de la Mama/genética , Carcinoma Adenoide Quístico/genética , Modelos Genéticos , Animales , Antígenos Virales de Tumores/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Carcinoma Adenoide Quístico/inmunología , Carcinoma Adenoide Quístico/patología , Femenino , Virus de la Leucemia Murina de Friend/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
16.
Stem Cell Rev Rep ; 17(5): 1874-1888, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34003465

RESUMEN

Multiple infectious diseases lead to impaired lung function. Revealing the cellular mechanisms involved in this impairment is crucial for the understanding of how the lungs shift from a physiologic to a pathologic state in each specific condition. In this context, we explored the pathogenesis of Paracoccidioidomycosis, which affects pulmonary functioning. The presence of cells expressing Nestin-GFP has been reported in different tissues, and their roles as tissue-specific progenitors have been stablished in particular organs. Here, we explored how Nestin-GFP+ cells are affected after lung infection by Paracoccidioides brasiliensis, a model of lung granulomatous inflammation with fibrotic outcome. We used Nestin-GFP transgenic mice, parabiosis surgery, confocal microscopy and flow cytometry to investigate the participation of Nestin-GFP+ cells in Paracoccidioides brasiliensis pathogenesis. We revealed that these cells increase in the lungs post-Paracoccidioides brasiliensis infection, accumulating around granulomas. This increase was due mainly to Nestin-GPF+ cells derived from the blood circulation, not associated to blood vessels, that co-express markers suggestive of hematopoietic cells (Sca-1, CD45 and CXCR4). Therefore, our findings suggest that circulating Nestin-GFP+ cells participate in the Paracoccidioides brasiliensis pathogenesis in the lungs.


Asunto(s)
Pulmón , Animales , Ratones , Nestina/genética , Paracoccidioides/genética
17.
Stem Cells Transl Med ; 10(3): 346-356, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33112056

RESUMEN

Niches are specialized tissue microenvironments that control stem cells functioning. The bone marrow mesenchymal stem cell niche defines a location within the marrow in which mesenchymal stem cells are retained and produce new cells throughout life. Deciphering the signaling mechanisms by which the niche regulates stem cell fate will facilitate the use of these cells for therapy. Recent studies, by using state-of-the-art methodologies, including sophisticated in vivo inducible genetic techniques, such as lineage-tracing Cre/loxP mediated systems, in combination with pharmacological inhibition, provide evidence that sensory neuron is an important component of the bone marrow mesenchymal stem cell niche. Strikingly, knockout of a specific receptor in sensory neurons blocked stem cell function in the bone marrow. The knowledge arising from these discoveries will be crucial for stem cell manipulation in the future. Here, we review recent progress in our understanding of sensory nerves biology in the stem cell niche.


Asunto(s)
Células Madre Mesenquimatosas , Células Receptoras Sensoriales , Nicho de Células Madre , Médula Ósea , Diferenciación Celular , Células Madre
18.
J Cell Mol Med ; 24(17): 9574-9589, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32691511

RESUMEN

The tumour mass is composed not only of heterogeneous neoplastic cells, but also a variety of other components that may affect cancer cells behaviour. The lack of detailed knowledge about all the constituents of the tumour microenvironment restricts the design of effective treatments. Nerves have been reported to contribute to the growth and maintenance of numerous tissues. The effects of sensory innervations on tumour growth remain unclear. Here, by using state-of-the-art techniques, including Cre/loxP technologies, confocal microscopy, in vivo-tracing and chemical denervation, we revealed the presence of sensory nerves infiltrating within the melanoma microenvironment, and affecting cancer progression. Strikingly, melanoma growth in vivo was accelerated following genetic ablation or chemical denervation of sensory nerves. In humans, a retrospective analysis of melanoma patients revealed that increased expression of genes related to sensory nerves in tumours was associated with better clinical outcomes. These findings suggest that sensory innervations counteract melanoma progression. The emerging knowledge from this research provides a novel target in the tumour microenvironment for therapeutic benefit in cancer patients.


Asunto(s)
Melanoma/patología , Células Receptoras Sensoriales/patología , Neoplasias Cutáneas/patología , Animales , Comunicación Celular/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Estudios Retrospectivos , Microambiente Tumoral
19.
Cell Tissue Res ; 380(3): 615-625, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31950264

RESUMEN

Mutations in Foxn1 and Prkdc genes lead to nude and severe combined immunodeficiency (scid) phenotypes, respectively. Besides being immunodeficient, previous reports have shown that nude mice have lower gonadotropins and testosterone levels, while scid mice present increased pachytene spermatocyte (PS) apoptosis. Therefore, these specific features make them important experimental models for understanding Foxn1 and Prkdc roles in reproduction. Hence, we conducted an investigation of the testicular function in nude and scid BALB/c adult male mice and significant differences were observed, especially in Leydig cell (LC) parameters. Although the differences were more pronounced in nude mice, both immunodeficient strains presented a larger number of LC, whereas its cellular volume was smaller in comparison to the wild type. Besides these alterations in LC, we also observed differences in androgen receptor and steroidogenic enzyme expression in nude and scid mice, suggesting the importance of Foxn1 and Prkdc genes in androgen synthesis. Specifically in scid mice, we found a smaller meiotic index, which represents the number of round spermatids per PS, indicating a greater cell loss during meiosis, as previously described in the literature. In addition and for the first time, Foxn1 was identified in the testis, being expressed in LC, whereas DNA-PKc (the protein produced by Prkdc) was observed in LC and Sertoli cells. Taken together, our results show that the changes in LC composition added to the higher expression of steroidogenesis-related genes in nude mice and imply that Foxn1 transcription factor may be associated to androgen production regulation, while Prkdc expression is also important for the meiotic process.


Asunto(s)
Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/fisiología , Células Intersticiales del Testículo/fisiología , Células de Sertoli/fisiología , Animales , Células Intersticiales del Testículo/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Receptores Androgénicos/metabolismo , Células de Sertoli/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...